SIGNS OF AGE-ASSOCIATED CELLULAR DECLINE CAN INCLUDE:

- Lower levels of daily energy
- Decline in strength and stamina
- Decreased immune function
- Reduced resilience

Evolving research has shown these changes are often associated with a gradual deterioration in specific natural processes deep inside our cells as we grow older. They become noticeable once they affect the performance of enough cells involved in a specific function.

For more information on AACD please visit myaacd.org

REFERENCES

Visit PureEncapsulationsPro.com/renual for more information.
SIGNS OF AGE-ASSOCIATED CELLULAR DECLINE CAN INCLUDE:

- Lower levels of daily energy
- Decline in strength and stamina
- Decreased immune function
- Reduced resilience

Evolving research has shown these changes are often associated with a gradual deterioration in specific natural processes deep inside our cells as we grow older. They become noticeable once they affect the performance of enough cells involved in a specific function.

For more information on AACD please visit myaacd.org

REFERENCES

Visit PureEncapsulations.com/renual for more information.

#1 MOST RECOMMENDED BRAND
by healthcare professionals*
Research continues to enhance our understanding of the cellular decline that is responsible for loss of energy, strength and resilience as we grow older. What has become increasingly evident is the importance of mitochondrial health, which determines how much energy our cells can make.

As the "powerhouse" of the cell, mitochondria are primarily responsible for producing cellular energy (ATP). However, a variety of cellular mechanisms decline and mitochondria become less efficient, which gradually impairs cellular aging and mitochondria function as a factor commonly driving accelerated cellular aging.

Old mitochondria are routinely destroyed through a process known as mitophagy. The recycled parts are salvaged to create new mitochondria, a process called mitochondrial biogenesis. This sustainable system hums when we’re young, but grows sluggish with time, weakening muscles and driving other hallmarks of aging.

In a 2016 study published in Nature Medicine, a first-in-class natural antioxidant compound called urolithin A (UA) effectively supported mitophagy in preclinical models. More recent research indicates benefits in muscle and energy production, good for patients who need support with mitochondrial health.

UROLITHIN A

The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.

Old mitochondria are routinely destroyed through a process known as mitophagy. The recycled parts are salvaged to create new mitochondria (a process called mitochondrial biogenesis). This sustainable system hums when we’re young, but grows sluggish with time, weakening muscles and driving other hallmarks of aging.

In a 2016 study published in Nature Medicine, a first-in-class natural antioxidant compound called urolithin A (UA) effectively supported mitophagy in preclinical models. More recent research indicates benefits in muscle and energy production, good for patients who need support with mitochondrial health.

UROLITHIN A

The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.

Old mitochondria are routinely destroyed through a process known as mitophagy. The recycled parts are salvaged to create new mitochondria (a process called mitochondrial biogenesis). This sustainable system hums when we’re young, but grows sluggish with time, weakening muscles and driving other hallmarks of aging.

In a 2016 study published in Nature Medicine, a first-in-class natural antioxidant compound called urolithin A (UA) effectively supported mitophagy in preclinical models. More recent research indicates benefits in muscle and energy production, good for patients who need support with mitochondrial health.

UROLITHIN A

The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.

Old mitochondria are routinely destroyed through a process known as mitophagy. The recycled parts are salvaged to create new mitochondria (a process called mitochondrial biogenesis). This sustainable system hums when we’re young, but grows sluggish with time, weakening muscles and driving other hallmarks of aging.

In a 2016 study published in Nature Medicine, a first-in-class natural antioxidant compound called urolithin A (UA) effectively supported mitophagy in preclinical models. More recent research indicates benefits in muscle and energy production, good for patients who need support with mitochondrial health.

UROLITHIN A

The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.

Old mitochondria are routinely destroyed through a process known as mitophagy. The recycled parts are salvaged to create new mitochondria (a process called mitochondrial biogenesis). This sustainable system hums when we’re young, but grows sluggish with time, weakening muscles and driving other hallmarks of aging.
Research continues to enhance our understanding of the cellular decline that is responsible for loss of energy, strength and resilience as we grow older. What has become increasingly evident is the importance of mitochondrial health, which determines how much energy our cells can make.

As the “powerhouse” of the cell, mitochondria are primarily responsible for producing cellular energy (ATP). However, a variety of cellular mechanisms decline and mitochondria become less efficient, which gradually impairs cellular function as we age. Current evidence points to mitochondrial dysfunction as a factor commonly driving accelerated cellular aging.

Old mitochondria are routinely destroyed through a process known as mitophagy. The recycled parts are salvaged to create new mitochondria (a process called mitochondrial biogenesis). This sustainable system helps maintain mitochondrial health, which depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.

Our unique liquid blend of Mitopure™ Urolithin A, CoQ10, resveratrol and vegetable glycerin can have some visual separation. Be assured, this separation is normal, and each capsule is safe and contains the right amount of healthy, active ingredients.

RENUAL can offer patients these important benefits:

- Unique polyphenol metabolite
- Enhances mitochondrial renewal to support energy output/energy production‡
- Promotes healthy muscle function‡
- Supports energy output
- Promotes healthy aging‡

‡These statements have not been evaluated by the Food & Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.

Supplement Facts

<table>
<thead>
<tr>
<th>Serving Size: 2 Caplique® Capsules • Servings Per Container: 30</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitopure™ (proprietary Urolithin A)</td>
<td>250 mg</td>
</tr>
<tr>
<td>Trans-Resveratrol</td>
<td>250 mg</td>
</tr>
<tr>
<td>Coenzyme Q10</td>
<td>60 mg</td>
</tr>
<tr>
<td>Other ingredients: vegetable glycerin, vegetarian capsule (gelatin, water)</td>
<td></td>
</tr>
</tbody>
</table>

Visit PureEncapsulationsPro.com for more information on our GMO Policy.

Our unique liquid blend of Mitopure™ Urolithin A, CoQ10, resveratrol and vegetable glycerin can have some visual separation. Be assured, this separation is normal, and each capsule is safe and contains the right amount of healthy, active ingredients.

For more information, please visit PureEncapsulationsPro.com/renual

RENUAL can offer patients these important benefits:

- Unique polyphenol metabolite
- Enhances mitochondrial renewal to support energy output/energy production‡
- Promotes healthy muscle function‡
- Supports energy output
- Promotes healthy aging‡

‡These statements have not been evaluated by the Food & Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.

RENUAL can offer patients these important benefits:

- Unique polyphenol metabolite
- Enhances mitochondrial renewal to support energy output/energy production‡
- Promotes healthy muscle function‡
- Supports energy output
- Promotes healthy aging‡

‡These statements have not been evaluated by the Food & Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.

Supplement Facts

<table>
<thead>
<tr>
<th>Serving Size: 2 Caplique® Capsules • Servings Per Container: 30</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitopure™ (proprietary Urolithin A)</td>
<td>250 mg</td>
</tr>
<tr>
<td>Trans-Resveratrol</td>
<td>250 mg</td>
</tr>
<tr>
<td>Coenzyme Q10</td>
<td>60 mg</td>
</tr>
<tr>
<td>Other ingredients: vegetable glycerin, vegetarian capsule (gelatin, water)</td>
<td></td>
</tr>
</tbody>
</table>

Visit PureEncapsulationsPro.com for more information on our GMO Policy.

Our unique liquid blend of Mitopure™ Urolithin A, CoQ10, resveratrol and vegetable glycerin can have some visual separation. Be assured, this separation is normal, and each capsule is safe and contains the right amount of healthy, active ingredients.

For more information, please visit PureEncapsulationsPro.com/renual

RENUAL can offer patients these important benefits:

- Unique polyphenol metabolite
- Enhances mitochondrial renewal to support energy output/energy production‡
- Promotes healthy muscle function‡
- Supports energy output
- Promotes healthy aging‡

‡These statements have not been evaluated by the Food & Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.
SIGNS OF AGE-ASSOCIATED CELLULAR DECLINE CAN INCLUDE:

- Lower levels of daily energy
- Decline in strength and stamina
- Decreased immune function
- Reduced resilience

Evolving research has shown these changes are often associated with a gradual deterioration in specific natural processes deep inside our cells as we grow older. They become noticeable once they affect the performance of enough cells involved in a specific function.

For more information on AACD please visit myaacd.org

RÉFÉRENCES

15. Lipitor® (Atorvastatin) in the Management of Atherosclerosis in Healthy Adults 40-75 Years. https://clinicaltrials.gov/ct2/show/NCT04198312

Visit PureEncapsulationsPro.com/renewal for more information.

Ask your practitioner about RENUAL: our exclusive, first-to-market formula to support energy production, muscle function and healthy aging.

© 2021 Pure Encapsulations, LLC. All Rights Reserved.
Mitochondrial Health and Renewal with Urolithin A

The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular processes as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.

Old mitochondria are routinely destroyed through a process known as mitophagy. The recycled parts are salvaged to create new mitochondria. In a 2016 study published in *Nature Medicine*, a first-in-class natural product called Mitopure™ effectively supported mitochondrial health in preclinical models. More recent research indicates benefits in muscle function and mitochondrial efficiency in elderly subjects after taking UA for 4 weeks. UA taken orally, as Miropure™, outperforms pomegranate as shown in preclinical models. A single dose of Mitopure™ than the results of an 8 oz serving of pomegranate juice, one of the richest sources of these particular antioxidants.

Urolithin A (UA) is derived from complex molecules called ellagitannins in pomegranates and pomegranate juice. But because of differences in intestinal bacteria, not everyone can generate UA after eating these foods. Old mitochondria are routinely destroyed through a process known as mitophagy. The recycled parts are salvaged to create new mitochondria. In a 2016 study published in *Nature Medicine*, a first-in-class natural product called Mitopure™ effectively supported mitochondrial health in preclinical models. More recent research indicates benefits in muscle function and mitochondrial efficiency in elderly subjects after taking UA for 4 weeks. UA taken orally, as Miropure™, outperforms pomegranate as shown in preclinical models. A single dose of Mitopure™ than the results of an 8 oz serving of pomegranate juice, one of the richest sources of these particular antioxidants.

Urolithin A (UA) is derived from complex molecules called ellagitannins in pomegranates, nuts and berries. After eating these foods, bacteria in the intestine generate urolithins, which are responsible for the health benefits of pomegranates, nuts and berries. After eating these foods, bacteria in the intestine generate urolithins, which are responsible for the health benefits of pomegranates and pomegranate juice. But because of differences in bacterial populations in the intestinal tract, not everyone can generate UA after consuming these foods.

Mitochondrial Renewal Featuring Mitopure™ Urolithin A

Exclusive, first-to-market in healthcare practitioner channel†

RENUAL contains a combination of ingredients, including Mitopure™ Urolithin A, resveratrol and CoQ10 to support:

- **Powers healthy muscle function‡**
- **Enhances mitochondrial renewal to support energy output/energy production‡**
- **Promotes healthy muscle function/energy production‡**
- **Promotes healthy aging‡**

RENUAL

- **Unique polyphenol metabolite**
- **Promotes healthy aging**
- **Enhances mitochondrial renewal**
- **Supports energy output/energy production**
- **Powers healthy muscle function**
- **Promotes healthy aging**

RENUAL is a next-generation mitochondrial support product. RENUAL is good for patients who need support with energy production, muscle function and healthy aging.

Our unique liquid blend of Mitopure™ Urolithin A, CoQ10, resveratrol and vegetable glycerin can have some visual separation. Be assured, this separation is normal, and each capsule is safe and contains the right amount of healthy, active ingredients.

†Visit PureEncapsulationsPro.com for more information on our GMO Policy.

‡These statements have not been evaluated by the Food & Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.
The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Given the pivotal role mitochondria play in our cellular health and all organs throughout the body, the ability to maintain mitochondrial health after middle age may help to support healthy cellular aging. Research continues to enhance our understanding of the cellular decline that is responsible for loss of energy, strength and resilience as we grow older. What has become increasingly evident is the importance of mitochondrial health, which determines how much energy our cells can make.3

As the “powerhouse” of the cell, mitochondria are primarily responsible for producing cellular energy (ATP).4 However, a variety of cellular mechanisms decline and mitochondria become less efficient, which gradually impairs cellular function as we age. Current evidence points to mitochondrial dysfunction as a factor commonly driving accelerated cellular aging.5

New Research and new interventions that target the health of mitochondria may show significant promise for supporting cellular processes that drive other hallmarks of aging.10,11

Old mitochondria are routinely destroyed through a process known as mitophagy, which is the recycling process in which damaged or defective mitochondria are selectively eliminated. The recycled parts are salvaged to create new mitochondria and these recycled mitochondria have the advantage of proteins and other metabolically active tissues that have been rejuvenated. Old mitochondria are routinely destroyed through a process known as mitophagy, which is the recycling process in which damaged or defective mitochondria are selectively eliminated. The recycled parts are salvaged to create new mitochondria and these recycled mitochondria have the advantage of proteins and other metabolically active tissues that have been rejuvenated.

In a 2016 study published in Nature Medicine, a first-in-class natural antioxidant compound called urolithin A (UA) effectively supported mitophagy in preclinical models.4 More recent research indicates benefits in muscle function and mitochondrial efficiency in elderly subjects after taking UA for 4 weeks.14 UA taken orally, as Miropure™, outperforms pomegranate as shown in a trial of healthy adults whose plasma UA levels were six times higher after consuming these foods.12

Pomegranate juice, one of the richest sources of these particular antioxidants,15‡ may show significant promise for supporting cellular processes that drive other hallmarks of aging.10,11

In a 2016 study published in Nature Medicine, a first-in-class natural antioxidant compound called urolithin A (UA) effectively supported mitophagy in preclinical models.4 More recent research indicates benefits in muscle function and mitochondrial efficiency in elderly subjects after taking UA for 4 weeks.14 UA taken orally, as Miropure™, outperforms pomegranate as shown in a trial of healthy adults whose plasma UA levels were six times higher after consuming these foods.12

Pomegranate juice, one of the richest sources of these particular antioxidants,15‡ may show significant promise for supporting cellular processes that drive other hallmarks of aging.10,11

The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondrial Health and Mitochondrial Biogenesis

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.7-9

Mitochondria produce energy (ATP) through a process called oxidative phosphorylation.16 This system requires the sequence of enzymes, known as the electron transport chain, that is encoded in our genes. The life span of mitochondria is limited, in part, by frequent exposure to oxidative stress that occurs during normal energy metabolism. As they age, mitochondria produce less energy, and may even disturb normal cellular functions as they accumulate. Therefore, a cell’s energy output and overall health depends on mitochondrial removal and replacement. Supporting this recycling process is a newly recognized strategy for maintaining cellular health, particularly in muscles and other metabolically active tissues.
SIGNS OF AGE-ASSOCIATED CELLULAR DECLINE CAN INCLUDE:

- Lower levels of daily energy
- Decline in strength and stamina
- Decreased immune function
- Reduced resilience

Evolving research has shown these changes are often associated with a gradual deterioration in specific natural processes deep inside our cells as we grow older. They become noticeable once they affect the performance of enough cells involved in a specific function.

For more information on AACD please visit myaacd.org

REFERENCES

Visit PureEncapsulationsPro.com/renual for more information.

N E W

RENEWAL

#1 MOST RECOMMENDED BRAND
by healthcare professionals

Ask your practitioner about RENUAL: our exclusive, first-to-market formula to support energy production, muscle function and healthy aging